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A general procedure is described for calculating activation parameters from raw kinetic data in one step. 
The method is applicable to  any kinetic order of reaction, and to  kinetic experiments carried out either at 
constant temperature (the conventional method) or under conditions where the temperature varies 
during the course of each kinetic run. The principle of the new method is to substitute the Arrhenius 
dependence of the rate constant into the integrated form of a kinetic rate equation. This gives an 
expression for the concentration of a reactant as a function of time, temperature, initial concentration, 
activation energy, and pre-exponential factor. Using experimental values of the time, temperature, and 
initial substrate concentration, the amounts of reactant left unreacted under different conditions may be 
fitted iteratively to  obtain the best values of the activation parameters. These agree closely with those 
calculated by traditional methods, but the new method has the advantage that the calculated 
uncertainties in the activation parameters reflect directly the scatter in the experimental observables. 

The calculation of activation parameters from raw kinetic data 
traditionally involves two steps: determination of rate constants 
for a series of experiments each carried out at a constant temper- 
ature; and an Arrhenius (or Eyring) plot of the logarithms of 
the rate constants against the reciprocals of the temperatures. 
Considering the case of a first-order reaction as an example, two 
graphical plots (or two linear regressions) corresponding to 
equations (1) and (2) are needed.? 

ln[X] - ln[X], = -kt (1) 

Ink = 1nA - E,/RT (2) 

Using the two-step method, it is very difficult to make a 
proper assessment of the uncertainties in the activation para- 
meters. First, there is the issue of transforming the uncertainties 
in the values of [XI and k into the uncertainties in their 
logarithms. Secondly, it is not straightforward to incorporate 
the uncertainties in the rate constants into the uncertainties in 
the activation energy. Most often, reported uncertainties in 
activation energies reflect only the deviations of the individual 
Ink points from the line of best fit to equation (2); they do not 
reflect the scatter in the originally observed quantities, namely 
time, temperature, and reactant concentration. An objective of 
this work was to develop a mathematical protocol that would 
allow the uncertainties in the activation parameters to reflect 
directly the scatter in the experimental observables. 

In this paper, we report a method whereby the above 
objective has been reached. Our method is applicable to 
reactions of any kinetic order, and can be used not only with 
conventional kinetic experiments, in which each run is carried 
out at constant temperature, but also with kinetic experiments 
where the temperature varies during the course of the 
We have compared the traditional two-step and the new one- 
step procedures for calculating activation parameters both with 

t Throughout this paper, the symbols have the following meanings: 
[XI = concentration; [XI, = initial concentration; k = rate constant; 
t = time; T = temperature; E, = Arrhenius activation energy; A = 
pre-exponential factor. All integrations are assumed to be taken over 
the time limits 0- t. 

kinetic data obtained in our own laboratory and with kinetic 
data from a number of cases obtained from the literature. 

Development of the Mathematical Protocol 
Constant-temperature Experiments.-If we eliminate k from 

equations (1) and (2), and write the result in exponential form, 
we obtain equation (3). If experimental data are available at 

(3) 

several temperatures, it is possible to fit [XI to the known values 
of [XI,, t, and T in order to choose the parameters A and E, 
which provide the best fit. The important distinction between 
this procedure and the conventional two-step method is that the 
data for all the different temperatures are fitted simultaneously. 
We used an iterative non-linear least-squares fit based on a 
local linear approximation using a standard multiple linear 
regression package. In practice, we made the following amend- 
ments to the procedure: (i) instead of fitting to A (which involves 
the long extrapolation to T = co) we fitted a parameter kref 
which was defined at a convenient temperature Tref within the 
temperature interval of the experiment. The pre-exponential 
factor was then calculated at the very end of the fitting pro- 
cedure by making use of equation (4), which defines kref. This 

amendent greatly reduces the statistical correlation between the 
fitted values of A and E,. (ii) The second amendment, used only 
for first-order data, was to treat [XI, as well as kref and E, as a 
parameter to be determined in the least-squares fit. This is 
especially advantageous if early points in the run are in error 
owing to thermal equilibration not being complete. 

The previous paragraph illustrated the procedure for the case 
of the first-order reaction. We will now generalize. For most 
simple kinetic models, it is possible to write a function 
describing the dependence of [XI (as the dependent variable) 
upon the time t, the initial concentration(s), the temperature T, 

( 5 )  
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and the fitted parameters E, and krep For kinetic orders higher 
than first, [XI, must be measured experimentally. 

The fit of [XI, t, and T to E, and kref is achieved using a 
group of FORTRAN subroutines called MLREGR.* A driver 
program is necessary to convert the experimentally determined 
parameters ([XI, t, and 7‘) into the form that is needed for 
the multiple linear regression performed by MLREGR and to 
supply the partial derivatives a[X]/aE, and d[X]/akref; the 
multiple regression procedure optimizes the values of E, and 
kref so as to minimize the values of the residuals (the differences 
between the calculated and observed values of [XI) using these 
partial derivatives. In this paper we have investigated three 
common kinetic models: first order, second order X + Y - 
products with [XI, # [Y],, and second order for the cases 
2X ---- products or equivalently X + Y --- products with 
[XI, = [Y],. Chart 1 gives the relevant equations? analogous 
to equation (3, for the different kinetic models, together with 
the partial derivatives mentioned previously. 

For complicated reactions, it is not always possible to write 
an expression for [XI as a function of time in closed form. 
However, the kinetic equation may always be written in the 
form d[X]/dt = g([X], t; [X],, T, E,, kref). This equation can 
be solved numerically to obtain [X](t) for given values of [XI,, 
T, E,, and kref, using standard numerical methods such as the 
modified Euler a lg~r i thm.~  The partial derivatives required for 
least-squares fitting may be evaluated numerically by finite 
differences, allowing the methods of the present paper to be used 
for reactions of any complexity. 

First order (X - products) 

[XI = [XIo exp [ - Lkreft] where L = exp -- - - - [ :(; Tte)] 

Second order (X + nY - products) 

where M = exp (-aLkreft) and a = n[X], - [Y], 

Dimer-type (2X - products or X + Y - products and [XIo = [Y],) 

Chart 1. Equations for constant-temperature kinetics 

* MLREGR is a set of FORTRAN subroutines written by R. A. Le 
Budde and modified by R. J. LeRoy and J. E. Grabenstetter. 
t SUP 56705 outlines the derivation of these equations. 
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Figure. Variable-temperature [XI-t plot 

Variable-temperature Experiments.-A variable-temperature 
experiment is done by starting the kinetic run at a low temper- 
ature where the rate is very slow, and gradually increasing the 
temperature until the reaction is complete. This creates a plot of 
[X] uersus t that has a characteristic sigmoid shape (see Figure). 
The plot is flat at the beginning of the run where the reaction is 
slow, curves downwards as the reaction speeds up, and flattens 
out again as the reaction approaches completion. 

The conventional, two-step method of data analysis depends 
on the fact that the rate constant can be obtained from the 
slope of the curve. For the case of first order, equation (6) 

k = -/[XI “1 
dt 

applies. Knowing both the rate constant at various times, and 
the relationship between time and temperature, a traditional 
Arrhenius plot can be made, and the activation parameters can 
be obtained from a single kinetic run. However, the same 
problems relating to error analysis pertain as in constant- 
temperature kinetics. 

The one-step method of calculation (still for the example of a 
first-order reaction) was developed by taking equation (6), 
rearranging, and integrating to give equation (7). Notice that in 

jg = -jkdt (7) 

this case Jkdt # kt because k is not constant in a variable- 
temperature experiment; it depends on T and hence on t. To 
integrate, some expression for T in terms of t must be sub- 
stituted into equation (7). If this expression is more complicated 
than linear, then the right-hand side of equation (7) cannot be 
integrated analytically, and numerical integration (quadrature) 
must be used. For the present the equations will be given with 
Jkdt unintegrated. The equations listed in Chart 1 for the 
different kinetic orders of reaction are modified as shown in 
Chart 2. 

With the use of numerical quadrature for the right-hand side 
of equation (7), variable-temperature data may be fitted directly 
using MLREGR in exactly the same way as for constant-temper- 
ature data. 
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First order (X - products) 

[XI = [XIo exp [ -krefJLdt] where L = exp -- - - - [ % 791 
a = -[X]JLdt 
akref 

Second order (X + nY - products) 

where M = exp (-ak,,,JL dt) and a = n[X], - [Y], 

Dimer-type (2X - products or X + Y - products and [XIo = [Y],) 

Chart 2. Equations for variable-temperature kinetics 

Results 
Constant-temperature Experiments.-The results include 

both first- and second-order reactions. The first-order reactions 
are the cis-trans isomerization of azobenzene studied in 
our laboratory and, from the literature, the hydrolysis of 
t-butyl bromide and the decomposition of benzenediazonium 
chloride.6 The second-order reactions are the basic hydrolysis 
of ethyl acetate, carried out in our laboratory, the benzylation 
of aniline, ' and the basis hydrolysis of several aliphatic amides.' 
Finally, the first-order decomposition of N,05' will be 
presented in detail as a more complicated example of the 
application of the one-step method. Complete data, consisting 
of times and the corresponding concentrations (or values from 
which the concentrations could be derived) for at least two 
different temperatures, were given in the original papers. In each 
case (except that of N 2 0 5  which is explained in detail later), the 
original data were manipulated as little as possible to produce 
values of [XI, or in the cases of azobenzene and benzene- 
diazonium chloride values proportional to [XI. 

The results are summarized in Table 1. If a value for the 
activation energy was given in the original paper, it is reported 
as well. Uncertainties are not given for these reported values, as 
they were not given in the original papers, and have not been 
recalculated. In the cases of azobenzene and ethyl acetate, the 
'One Step Calc.' value is the one obtained using data obtained in 
our laboratory. In every case the results of the one-step method 
agree closely with that of the traditional two-step method 
(Table 1). In Table 1 and throughout this paper, the quoted 
uncertainties are given as 95% confidence intervals and not as 
standard deviations. We re-emphasize that in the one-step 
approach these uncertainties reflect the fit of the original data 

Table 1. Comparison of constant-temperature results for several 
reactions 

Total Two-step One-step 
calc. E,/ no. data calc. Ea/ 

Reaction points kJ mol-' kJ mol-' log A Ref. 
Azobenzene isomerization 
Bu'Br Hydrolysis 
C,H,N,Cl Decomposition 
Ethyl acetate hydrolysis 
C,H,NH, Benzylation 
Acetamide hydrolysis 
Propionamide hydrolysis 
Butyramide hydrolysis 
Isobutyramide hydrolysis 
N,O, Decomposition 

50 87.0" 88.8 & 3.9 10.0 
20 86.2 87.1 f 2.0 10.4 5 

129 113.1 113.1 f 0.2 15.5 6 
29 47.2' 44.1 & 2.2 6.8 
14 56.3 58.5 f 5.3 5.7 7 
27 61.1 & 4.9 6.3 8 
27 61.8 & 0.4 6.4 8 
27 66.6 & 0.3 6.7 8 
27 67.7 & 0.7 6.9 8 

204 103.3 103.3 & 1.3 13.6 9 

a Lit." 91-99 kJ mol-'. ' Lit." 48.1 kJ mol-' 

([XI, [XI,, t, and 7') to the kinetic model and not simply the 
scatter in an Arrhenius plot. 

The first-order thermal isomerization of cis-azobenzene was 
monitored spectrophotometrically, and since the absorbance 
was proportional to the concentration Abs and Abs, were used 
in equation (3) in place of [XI and [XI,. The data comprised one 
run with 8 observations at 55.8, two runs with 10 each at 65.6, 
and two runs with 11  each at 75.5 "C. 

The first-order hydrolysis of t-butyl bromide was conducted 
by Bateman et aL5 in 90% acetone, with determination of acidity 
(i.e. formation of HBr) used to measure the progress of the 
reaction. The original paper gave the results as %BuOH formed. 
We used the data in the form [Bu'Br] as calculated by 
Latham." The data comprised ten observations each at 25 and 
50 "C. 

The first-order decomposition of benzenediazonium chloride 
was studied by Moelwyn-Hughes et aL6 in aqueous solution by 
monitoring the pressure of the nitrogen gas as the reaction 
proceeded. In this case, P and Po were used as proxies for [XI 
and [XI,. The data comprised 33 observations at 60, 67 at 40, 
and 28 at 15 "C. 

The basic hydrolysis of ethyl acetate was carried out in 
our laboratory, under 'true' second-order conditions, i.e. 
[EtOAc], # [OH-],, using the method of Levitt.', The 
progress of the reaction was followed by pipetting aliquots of 
the aqueous ethyl acetate-NaOH solution into dilute HCl and 
back-titrating with barium hydroxide. The ionic strength was 
not kept constant, but the effects of ionic strength on activation 
energy have been shown to be small." The data comprised 6 
observations at -0.2, 8 at 35.0, 6 at 36.7, and 9 at 36.9 "C. 

The reaction of aniline and benzyl chloride was studied by 
Peacock in 99.6% ethanol under true second-order conditions, 
with the ratio of reactants being ca. 4 : l .  The progress of the 
reaction was monitored by following the production of chloride 
ion argentimetrically. The calculated concentrations of aniline 
and benzyl chloride from the original paper were used in the 
calculations. The data comprised 6 observations at 35 and 8 at 
45 "C. 

The basic hydrolyses of several amides were carried out by 
Crocker et aL8 under pseudo-dimer conditions, using con- 
ductivity measurements to follow the reactions. The data 
comprised 9 observations each at 40.06, 63.2, and 95.9 "C. In 
Table 1 we show the results for CH,CONH,, C2H,CONH2, 
CH,[CH,],CONH,, and (CH,),CHCONH,. Activation 
energies were not reported in the original paper. 

The thermal decomposition of gaseous dinitrogen pentaoxide, 
studied by Daniels et al.,9 provides an example which illustrates 
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the versatility of the one-step method. The reaction, equation 
(8), is complicated by the rapidly established equilibrium 
between N204 and NO, [equation (9)] .  

N2°5(g) N2°4(g) + t 0 2 ( g )  (8) 

(9) 

The parameter actually used to monitor the decomposition 
was the total pressure, PI,,. PtoI = P(N,O,) + P(0,) + 
P(N204) + P(N0,). Daniels et af. calculated the pressure of 
N 2 0 5  remaining at each time and temperature in order to 
calculate the activation parameters in the conventional way. 
Since this effectively makes the conventional procedure into a 
three-step calculation we wished to fit the activation parameters 
to the observed values of to Ptot if possible. This involved 
finding an algebraic form for equation (10). 

The relationship between K and T was already known,I4 and 
Po was fitted to the original data using multiple linear 
regression. The derivation given in Supplementary Publication 
No SUP 56705 (19 pp) * afforded equation (1 1) as an inter- 

8K I 
(1 1) 

1 
2 

PtoI = -P0(3 - e-k') + J1 + 16KP0(1 - eAt) - 1 

mediate step. Substitution of the Arrhenius equation for k in 
equation (1 1) gave the final equation to be fitted by the multiple 
linear regression program. The success of this approach 
(calculated Ea essentially identical to the reported value) gives 
us confidence that the one-step methodology described here can 
be applied not only to reactions of any kinetic order, but also 
to the use of any directly observable parameter in the fitting 
procedure. 

Variable-temperature Experiments.-In this section several 
methods of analysing data from variable-temperature kinetic 
runs will be detailed and compared. Data will be presented from 
the thermal cis - trans isomerization of azobenzene, a first- 
order reaction. 

As mentioned above, variable-temperature data can be 
analysed by obtaining instantaneous rate constants from the 
concentration-time curve (Figure) and then applying the 
Arrhenius equation. Alternatively, numerical integration can be 
used to calculate the concentration-time curve, and then the 
data can be fitted iteratively to trial values of the activation 
energy and Arrhenius constant. The first approach is the two- 
step calculation as applied to variable-temperature kinetics, the 
second is the one-step method. Because variable-temperature 
kinetic experiments are encountered less commonly than con- 
stant-temperature ones, we will now describe both the two-step 
and the one-step calculations in some detail. 

The simplest possible way to treat the experimental data is to 
calculate 'instantaneous' rate constants by evaluating A[X]/At 
in equation (6)  by the method of finite differences between 
neighbouring data points, and then to use these rates in the 
logarithmic form of the Arrhenius equation. However, this 
method is unreliable because of the way in which experimental 
scatter is magnified in the rates, with the result that the final 
activation energies have very large uncertainties. Consequently 
this method was not pursued. 

* For details of Supplementary Publications see Instructions for 
Authors, in J.  Chem. SOC., Perkin Trans. 2, 1988, Issue 1. 

Table 2. Activation energies of the cis- trans isomerization of 
azobenzene as calculated by Methods A-C 

Method 
Total r- A 

Run points" A B C 
1 14 x 1 86.6 & 11.1 91.5 2.0 93.7 f 16.4 
2 9 x 2 78.1 & 6.5 75.5 f 2.3 77.2 f 15.7 
3 11 x 3 97.6 f 4.5 92.7 f 2.7 105.4 f 13.8 
4 1 8 x 2  78.0 k 20.6 
5 1 5 x 2  84.0 & 20.0 

All 67 90.1 f 4.9 

" E.g. 9 x 2 means 9 duplicated readings. 

The simplest useful method of data analysis (Method A) is to 
construct the concentration-time and temperature-time curves 
by hand. The instantaneous rate constants are obtained either 
by taking the slopes of tangents drawn on the concentration- 
time curve at known time values, or by calculating derivatives 
by the method of finite differences. The corresponding temper- 
atures may be read directly from the temperature-time curve. 
The activation energy is then obtained by a simple least-squares 
fit of the rate constants and temperatures to the Arrhenius 
equation. 

There are three major problems with this method of data 
analysis, mainly arising from its subjectivity. First, unless the 
measured points are very closely spaced, it is difficult to draw 
a sigmoid curve through them in an unbiased manner; the 
experimenter tends to impose his own expectations on the 
curve. Secondly, the process of drawing tangents on the graph 
can introduce substantial errors. Thirdly, and perhaps most 
important, it is very difficult to obtain a reasonable estimate of 
the uncertainty in the final value of the activation energy. In 
order to demonstrate this last point, it is useful to consider the 
application of the variable-temperature method to data where 
the experimental uncertainties are substantial. 

Method A was applied to the data obtained from several 
runs of the azobenzene isomerization (Table 2). The activation 
energies and uncertainties (as 95% confidence intervals) 
obtained from these runs are listed in Column A of Table 2. The 
quoted uncertainties reflect only the scatter in the Arrhenius 
plot: they contain no contribution from the scatter of the 
original data points, or from errors arising from the subjective 
nature of the manually drawn curves. As may be seen from 
Column A, the error limits derived in this way are over- 
optimistic, since the results from different runs do not lie within 
one another's uncertainty limits. However, there is no simple 
way of obtaining more realistic error limits from this method. 

The obvious alternative to drawing the concentration-time 
and temperature-time curves by hand is to fit an appropriate 
function to the data points using a least-squares method 
(Method B). This eliminates errors due to taking points from a 
hand-drawn curve, and those due to taking slopes of hand- 
drawn tangents to the curve. We fitted the concentrations-time 
and temperature-time data using polynomials of the forms (12) 
and (13). Instantaneous rate constants were then obtained by 

[x l ( t )  = a + bt + ct2 + dt3 +... (12) 

(13) T( t )  = a' + b't + c't2 + d't3 +... 
differentiation of (12) at various values of t ,  and the 
corresponding temperatures were calculated from the tempera- 
ture-time polynomial. The resulting temperature-dependent 
rate constants were then fitted to the Arrhenius equation as 
before. 



J. CHEM. SOC. PERKIN TRANS. 11 1988 367 

The results obtained from the azobenzene data using Method 
B are shown in Column B of Table 2. Once again, the uncer- 
tainties given are 95% confidence intervals based only on the 
scatter in the Arrhenius plot, and once again they can be seen to 
be overoptimistic, as the results from the different runs do not lie 
within one another's uncertainty limits. 

Quite apart from the problem of obtaining realistic error 
limits, there are other difficulties with the polynomial fitting 
approach. First, no polynomial can reproduce the sigmoid 
shape of the experimental concentration-time curve, since it 
necessarily becomes constant at times of positive and negative 
infinity, whereas polynomials become very fast varying and 
oscillatory beyond the points fitted. Secondly, there is the 
problem of choosing an appropriate order of polynomial to 
fit the concentration-time curve. High-order polynomials are 
notoriously unstable fitting functions, and can develop artificial 
oscillations between and beyond the data points. The method 
must therefore be taken in two steps, with the plot of the 
concentration-time curve examined for each order of poly- 
nomial. An element of subjectivity therefore enters this method 
in that the equation of the most physically reasonable curve is 
used to obtain the derivatives. 

The one-step calculation requires the numerical evaluation of 
the definite integral on the right-hand side of equation (7) (or its 
higher-order analogues, see Chart 2) for each experimental data 
point. In the present work, these integrals were evaluated using 
the Gauss-Legendre quadrature formula (14) where relation- 
ship (15) holds. The appropriate points xi and weights wi have 
been tabulated; in the present work, 8-point quadratures were 
found to give converged results. 

yi = fy)q + (T) 
The results for the azobenzene isomerization using numerical 

integration are given in Column C of Table 2. The uncertainties 
are larger than in the previous cases but they are now realistic; 
the E, values and their uncertainties overlap the mean value of 
92 kJ mol-'. This is not true of any of the methods described 
previously. The numerical integration procedure is free from 
bias, because it fits the values of E, and A directly to the data in a 
single step, rather than fitting the data to some functional form 
and then obtaining E, and A separately. In addition it takes into 
account the scatter in the original data, which is inherently not 
possible using a two-step procedure. Thus, this method gives a 
reliable estimate for the energy of activation and the most 
realistic estimate of the uncertainties involved. 

Combination of Data Sets.-The one-step computer program 
consists of two major parts, a driver and MLREGR. There are 
three types of kinetic rate laws currently included in the 
program (first order, second order, and dimer), the treatment of 
constant- and variable-temperature data being identical, with 
one minor exception noted in SUP 56705. The use of the 
multiple linear regression package MLREGR is common to all 
types of data, the purpose of the driver program being to 
provide MLREGR with the values of the partial derivatives and 
residuals. Details of the data input are given in SUP 56705. 

This procedure allows conventional, constant-temperature 
kinetic data to be combined with variable-temperature data. For 
the azobenzene isomerization, studied in our laboratory, a 
combination of the data leading to the results of Table 1 with 
those of Table 2 afforded E, 91.8 f 3.0 kJ mol-' and log A 10.47. 
The basic hydrolysis of ethyl acetate provided the first reported 

example of a second-order reaction studied using variable- 
temperature kinetics. A combination of 4 runs with 50 data 
points gave an activation energy of 43.0 f 9.8 kJ mol-' and log 
A 6.47. These data combined with the data leading to the results 
of Table 1 gave E, 43.4 1.5 kJ mol-' and log A 6.64. 

Conclusions.-One-step methods of data analysis allow 
activation parameters to be calculated directly from experi- 
mental observables. The results are in good agreement with 
those of traditional methods, but have the advantage that the 
uncertainty in the final result reflects directly the goodness of fit 
of the experimentally observed quantities to the kinetic model 
chosen for the reaction. Consequently, no complicated analysis 
of error propagation is required. 

Our experience with the variable-temperature method of 
kinetics allows us to pass the following comments on the 
method. As has been recognized2 this technique, in principle, 
permits activation parameters to be obtained from a single 
kinetic experiment. In practice, there are several points to 
consider. 

(1) It appears that the total amount of work involved is 
unlikely to be less than that required for the conventional 
experiments. We calculated activation parameters from all 3 1 
possible combinations of the five data sets relating to Table 2, as 
described in SUP 56705. To achieve comparable levels of pre- 
cision in variable-temperature kinetics required approximately 
the same number of data points to be used as in constant- 
temperature kinetics. * 

(2) Some prior knowledge of the reaction rate profile with 
temperature must be available before the starting temperature 
and temperature interval can be chosen. The initial temperature 
should be lower than that used in constant-temperature experi- 
ments, as the reaction rate has to be slow enough that d[X]/ 
dt ?: 0 at the beginning of the run. Our experiments seem to 
indicate (although we have not investigated this systematically) 
that the other extreme should be similar to that chosen for the 
highest temperature 'in constant-temperature kinetics, and the 
heating rate should be chosen such that the variable-temperature 
experiment is carried out in a time comparable with a typical 
constant-temperature run at an intermediate temperature; the 
actual time is of course dependent on the method chosen to 
follow the reaction. 

(3) Most analyses of variable-temperature reactions will 
require corrections to be made for the variation of the observed 
parameter (e.g. conductivity 1 6 3 1 7 )  with temperature or for 
expansion of the solvent when using titrimetry or spectrophoto- 
metry. This complicates the experimental procedure. 

(4) A varying temperature cannot be recorded as precisely as 
the constant temperature obtainable with a thermoregulated 
bath. 

(5) Our experience with the ethyl acetate hydrolysis carried 
out under true second-order conditions suggests that it may be 
difficult to achieve satisfactory precision with variable-temper- 
ature kinetics for other than first-order reactions. Our value for 
the activation energy, 43 kJ mol-I f. 25%, obtained with 50 
data points in all, carries an unacceptably large uncertainty 
compared with the uncertainty obtainable in the variable- 
temperature, first-order isomerization of azobenzene with a 
comparable number of data points (ca. 5%). We have not 
investigated this matter systematically because it is hard to 
separate this point from the inherently greater difficulty of 
studying kinetics of reactions that are other than first order. 

* It should be noted that although Ahlberg' used a polynomial fitting 
method to analyse his data, he used between 100 and 300 data points per 
variable-temperature run. This meant that his curves were extremely 
well defined, and thus the errors in using polynomials for obtaining the 
derivatives were small. 
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Experimental 

mental procedures are given in ref. 18. 
cis-trans Isomerization of Azobenzene.-Complete experi- 

Ethyl Acetate Hydrolysis. 3-(A) Constant temperature. A 
stock solution of carbonate-free NaOH was made up by dis- 
solving NaOH (10.06 g) in water (ca. 10 ml) and filtering. This 
solution was then made up to 1.00 1 using boiled and cooled 
water. It was stored in a sealed bottle with a soda lime trap and 
standardized with potassium hydrogen phthalate (KHP) using 
phenolphthalein as the indicator. A baryta solution was made 
using boiled water and Ba(OH), (ca. 3 8). This solution was 
filtered and stored in stoppered bottle. It was standardized 
before each use with KHP. A solution of HCl was made up by 
diluting concentrated HCl and standardized with the NaOH 
solution. 

The quantities below refer to a kinetic run at 35.0°C. The 
experiment was carried out by pouring a solution of 0.013 3 2 9 ~ -  
NaOH (ca. 300 ml) into an Erlenmeyer flask of known mass 
with a ground-glass stopper. The mass of the NaOH solution 
was determined by difference to be 303.2 g. At 20 OC, the density 
of this solution (assumed to be equal to that of water within the 
uncertainties of the experiment) was 0.998 23 g ml-’, giving a 
volume of 303.7 ml. This flask was placed in a thermostatted 
bath and brought to a constant temperature. A thin-walled glass 
ampoule of mass 0.4211 g containing ethyl acetate (0.1943 g) 
was placed into the NaOH solution and held beneath the 
surface with a copper wire. The ampoule was broken with a 
glass rod and this time noted. The solution was mixed well and 
portions (20.00 ml) were removed at various time intervals using 
a pipette and noting the time when half the solution had run out 
of the pipette into a flask containing 0.072 ~ ~ O M - H C ~  solution 
(5.00 ml). This solution was then titrated with the 0.011 3 1 3 ~ -  
Ba(OH), solution and the concentration of NaOH calculated. 
The temperature of the thermostatted bath was measured using 
an electronic (thermistor) digital thermometer. 

(B) Variable temperature. The solutions were prepared as 
described above. The ethyl acetate solution was prepared by 
pipetting ethyl acetate (1.00 ml) into boiled water (ca. 400 ml) 
and making up to 1.00 1. The solution was standardized by 
mixing a portion with a known excess of the NaOH solution and 
leaving the mixture for several hours at room temperature. A 
portion of this solution was removed, added to a portion of the 
HCl solution, and titrated with Ba(OH), to determine the 
amount of NaOH that reacted with ethyl acetate. 

The experiments were performed by pipetting portions of the 
NaOH solution and the ethyl acetate solution each into 
Erlenmeyer flasks with ground-glass stoppers, and where 
necessary adding pipetted portions of recently boiled water to 
either solution. These flasks were placed in ice-baths and cooled 
below 5 OC. The solutions were then mixed and poured back 
and forth between the two flasks to ensure adequate mixing. The 
time of first mixing and the temperature of the mixed solution 
were noted. The flask containing the reaction mixture was 
placed inside a large beaker filled with enough water to cover 
the liquid level inside the Erlenmeyer flask completely, and 
placed on a heater-stirrer. Magnetic stir bars were placed in 
both the beaker and the flask, and were both stirred by the 
magnetic stirrer. The heater was turned on to just above the 
lowest setting, and the temperature monitored with an elec- 
tronic (thermistor) digital thermometer placed in the reaction 

solution, and well sealed about the mouth of the flask. Portions 
were removed at frequent time intervals, pipetted into portions 
of the HCl solution, noting the temperature when the pipette 
was full and the time when the pipette was half-emptied into 
the acid solution. This solution was titrated with baryta to 
determine the amount of NaOH left in the mixture at the time of 
removal of the portion. The mass of each portion of mixture was 
determined by weighing each flask before and after the addition 
of the portion. The density of the mixture was determined to 
be extremely close to that of water at the corresponding temper- 
ature, so tables of water density were used to calculate 
the volume of each portion. 

Computational Results.-These were included with SUP 
56705. 
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